

Neutrino Flux At Detector

- Neutrino beam is much wider than detector
 - ◆ Angular spread in decays: can't control
 - ◆ Angular divergence of muon beam
- Larger muon beam divergence, smaller flux
 - Narrow muon beam maximizes flux
 - ◆ Uncertainty in muon divergence → uncertainty in flux
 - ◆ If decay divergence dominates muon divergence
 - ★ Narrowing muon divergence provides little benefit
 - **★** Lower uncertainty in flux
- Larger event rates
 - Small statistical uncertainty (~ 0.001 relative)
 - ◆ Requires low flux uncertainty

Computing Flux

• Flux is convolution of muon angular distribution with decay angular distribution

$$\rho(\theta_x, \theta_y) = \int \rho_{\text{Muon}}(\theta_x - \theta'_x, \theta_y - \theta'_y) \rho_{\text{Decay}}(\theta'_x, \theta'_y) d\theta'_x d\theta'_y$$

- $N d\Omega_{\rm Detector} \rho(0,0)$ is flux on detector
- If both Gaussian, muon beam σ_x , σ_y , decays σ_0

$$\frac{\phi(\sigma_x, \sigma_y, \sigma_0)}{\phi(0, 0, \sigma_0)} = \frac{1}{\sqrt{1 + \frac{\sigma_x^2}{\sigma_0^2} \sqrt{1 + \frac{\sigma_y^2}{\sigma_0^2}}}}$$

• Uncertainty in flux comes from taking derivates of this with respect to σ_x , σ_y

Fitting Model Parameters

• Monte-Carlo calculation of event rates at detector as a function of muon beam divergence (Crisan & Geer)

- Fit: $\sigma_0 = 0.42/\gamma$
 - ◆ Energy-weighted cross section
- Uncertainty: slope
 - ◆ Near zero divergence: small slope
 - ◆ Slope decreases to zero linearly
 - ◆ Larger divergence: larger slope, despite smaller flux!

Production Straight

- Divergence is $\sqrt{\gamma \epsilon}$
 - $\gamma = (1 + \alpha^2)/\beta$
- Large divergence at ends
 - Smaller β
 - Large α
 - * Required to make β rise quickly
- Long drift in middle of straight
 - Keeps α down, reducing γ
- Larger divergence leads to
 - ◆ Lower flux
 - ◆ Higher uncertainty

Analysis

- Too must uncertainty coming from ends
 - ◆ Very little flux comes from there
 - ◆ Insert bends so they aren't pointed toward detector
 - ★ Very little loss: 8%
 - ★ Required bend: ≈ 29 mrad.
 - ★ Only 25% of muons decaying toward detector, not 35%
- Uncertainty from middle still too high: 1% (want 0.1%???)
 - Assumed uncertainty in σ_{θ} of 15%
 - ★ Make better measurement of muon beam
 - **★** Detectors placed in beam
 - \star Electron backgrounds
 - ◆ Measure neutrino beam (Norem)
 - ★ Hodoscopes in a tunnel a couple hundred meters downstream
 - **★** Need several to get angular distribution
 - ★ Too close to source for one hodoscope to give angular distribution
 - ◆ Need high accuracy current measurement also

